最近,GitHub 上开源了一个存储库,该库实现了机器人技术中常用的一些路径规划算法,大部分代码是用 Python 实现的。值得一提的是,开发者用 plotting 为每种算法演示了动画运行过程,直观清晰。
该开源库中实现的路径规划算法包括基于搜索和基于采样的规划算法,具体目录如下图所示:基于搜索的路径规划算法
基于搜索的路径规划算法已经较为成熟且得到了广泛应用,常常被用于游戏中人物和移动机器人的路径规划。
与基于搜索不同,基于采样的路径规划算法不需要显式构建整个配置空间和边界,并且在高维度的规划问题中得到广泛应用。
Amazon SageMaker 是一项完全托管的服务,可以帮助机器学习开发者和数据科学家快速构建、训练和部署模型。Amazon SageMaker 完全消除了机器学习过程中各个步骤的繁重工作,让开发高质量模型变得更加轻松。
10月15日-10月22日,机器之心联合AWS举办3次线上分享,全程回顾如下,复制链接到浏览器即可观看。
另外,我们准备了Amazon SageMaker 1000元服务抵扣券,帮助开发者体验各项功能。点击阅读原文,即可领取。第一讲:Amazon SageMaker Studio详解
主要介绍相关组件,如studio、autopilot等,并通过在线演示展示这些核心组件对AI模型开发效率的提升。
主要介绍情感分析任务背景、进行基于Bert的情感分析模型训练、利用AWS数字资产盘活解决方案进行基于容器的模型部署。
主要介绍图神经网络、DGL在图神经网络中的作用、图神经网络和DGL在欺诈检测中的应用和使用Amazon SageMaker部署和管理图神经网络模型的实时推断。